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Abstract

High-order, curvilinear meshes have recently become popular due to their ability to conform to the geometry of the domain. Curvi-
linear meshes are generated by first constructing a straight-sided mesh and then curving the boundary elements (and, consequently,
some of the interior edges and faces) to respect the geometry of the domain. The locations of the interior vertices can be viewed
as an interpolation of a mapping function whose values at the boundary vertices (of the straight-sided mesh) are equal to the vertex
locations on the curved domain. We solve this interpolation problem using radial basis functions (RBFs) by extending earlier algo-
rithms that were developed for linear mesh deformation. An RBF interpolation technique using a biharmonic kernel is also called a
thin plate spline. We analyze the resulting mapping function (the RBF interpolation) in a framework based on calculus of variations
and provide a detailed explanation of the reasons the thin plate kernel RBF-based techniques have always yielded higher-quality
meshes than other techniques. It is known that the thin plate kernel RBF interpolation minimizes the “bending energy” associated
with a function, which depends on its second-order partial derivatives. We show that the minimization of the bending energy
attempts to preserve the shape of an element after the transformation. Other techniques minimize either a functional (that depends
on the first-order partial derivatives) that attempts to preserve the size of an element, or the bending energy in a smaller subspace
of functions. Thus, our experimental results show that our algorithm generates higher-quality meshes than prior algorithms.
c© 2015 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of organizing committee of the 24th International Meshing Roundtable (IMR24).
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1. Introduction

High-order finite element meshes have gained popularity in recent years due to their higher accuracy in numerical
simulations than their linear counterparts and their superior convergence properties when they are used to solve partial
differential equations (PDEs) with the finite element method. Since it is possible to curve the boundary elements and
make them conform to the geometry of the domain with greater accuracy1, several algorithms have been proposed in
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1 The greater accuracy in geometrical conformity comes at the cost of the interpolation error of the solution of the partial differential equations
and the convergence of the solver.
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the last decade to generate curvilinear, high-order meshes [11,26,28,32,33,41]. The generation of such meshes follows
a template that first constructs a coarse, straight-sided mesh and then deforms the mesh to respect the geometry of the
domain. The deformation (also called mesh morphing or mesh warping) can be viewed as a mapping function that
moves the boundary vertices to their intended location and computes the location of the interior vertices to produce
a mesh for which the size and shape of its elements is comparable to that of the original mesh. We develop a radial
basis function (RBF) interpolation-based technique using the thin plate kernel to deform a straight-sided mesh into
a curvilinear mesh. We analyze the mapping function that produces the curvilinear mesh and examine why it, in
contrast with existing techniques, produces meshes whose elements bear a greater resemblance to the elements in the
straight-sided mesh. This analysis leads to the development of a framework based on calculus of variations, which
can provide a pathway for mesh deformation algorithms in the future.

Mesh deformation and curvilinear mesh generation are currently identical problemswith identical solutions. These
solutions can be broadly divided into the following three classes: optimization [31,41], PDE [28,34], and interpolation-
based techniques [8]. Both linear mesh deformation and curvilinear mesh generation have been solved using the
first two classes. The RBF-based technique belongs to the last class, but it has been applied only for linear mesh
deformation. It has also been shown to produce higher-quality meshes than other techniques (although, it was much
slower for larger meshes) [37]. The last two classes can be viewed as a single class of interpolation techniques, where
the positions of the interior mesh vertices are interpolated from the positions of the boundary vertices using either the
solution of a PDE or an explicit interpolation technique. These algorithms are discussed in detail in Section 2.

We extend the RBF-based technique for curvilinear mesh generation in 2D using the thin plate kernel as it mini-
mizes the “bending energy” of the mapping function2. We provide a brief overview of the RBF interpolation methods
and their acceleration techniques in Section 3. We then analyze why the minimization of the bending energy is a more
suitable choice than other choices that are minimized in the PDE-based methods. The solution of Laplace’s equation,
for instance, minimizes the Dirichlet energy. This analysis is extended to a framework that is based on calculus of
variations to develop mesh deformation and curvilinear mesh generation algorithms in the future. The analysis and
the framework are provided in Section 4.

From our preliminary numerical experiments to generate curvilinear meshes from the RBF interpolation-based
technique, we visually observe that the quality of the final mesh elements (the size and shape) has a greater correlation
with the original mesh than the thermoelasticity-based method [25] for an input geometry. These visuals and some
quantitative results are presented in Section 5.

An avenue for future research includes the formulation of a functional whose optimization leads to the “perfect”
mesh deformation algorithm. Other directions include the acceleration of RBF-based interpolation techniques specifi-
cally for mesh deformation and an RBF-based interpolation technique for boundary-layer curvilinear mesh generation
with compactly supported kernels. These research directions are discussed in Section 6.

2. Related Work

As described above, curvilinear mesh generation and linear mesh deformation are identical problems and are
carried out using similar methods, which are described in detail below. In these methods, an initial straight-sided
mesh and the boundary deformation information are provided as the input. The output is obtained from one or a
combination of these techniques.

2.1. Optimization-Based Techniques

We categorize algorithms that use the local mesh topology information (edge connections, etc.) to deform meshes
under a single umbrella called optimization-based techniques because they typically involve local optimization of
some objective function that improves the quality of the mesh. For linear meshes, Wicke et al. [42] carried out mesh
deformation for elastoplastic simulations through dynamic meshing techniques that locally change the mesh topology
to account for the loss of mesh quality due to vertex movement during the deformation. Sastry et al. [31] used a

2 For 3D meshes, too, we recommend the triharmonic kernel for the same reason.
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log-barrier optimization routine to dictate vertex movement and to improve the quality of a tangled mesh (due to the
deformation) to obtain a valid mesh. Staten et al. [39] compare several algorithms that includes a mesh optimization-
based algorithm. Their list of algorithms also includes the LBWARP algorithm by Shontz and Vavasis [34], which
uses a weighted Laplacian smoothing framework. There are several techniques that use a torsional spring analogy to
move the mesh vertices [9,10,43].

For curvilinear mesh generation, Shephard’s group [23,24,27,32] developed several techniques that construct a
Bézier polynomial-based representation of the curvilinear boundary and suitably curve some of the interior elements
and modify the local connectivity to obtain a valid mesh. Remacle’s group developed a log-barrier technique [14,41]
(independently from [31]) that generates a valid mesh by maximizing the minimum Jacobian of high-order elements
in the mesh. Similar techniques were also used by Gargallo-Pieró et al. [11–13].

2.2. PDE-Based Techniques

PDE-based techniques construct a mapping function based on the solution of a PDE that transforms a mesh from the
initial domain to the final domain. The locations of the boundary nodes are treated as Dirichlet boundary conditions,
and the locations of the interior nodes are obtained from the solution of the PDE. Naturally, the choice of the elliptic
PDEs used for this purpose gives rise to several techniques.

For linear meshes, the solution of the Laplace’s equation was one of the first mappings used to deform meshes.
Baker [2] and Shontz and Vavasis [34] were the first to carry out extensive research on this technique. Shontz and
Vavasis carried out further research [35] to suggest modifications to the method to improve the results. We will revisit
their suggestions in Section 4 and explain how our framework generalizes the modifications they proposed. Instead of
Laplace’s equation, the biharmonic PDE [18] has also been used to deform meshes. The solution to the biharmonic
equation is also the solution to the PDE that models linear elasticity with the Dirichlet boundary condition. This
technique has been extended to consider PDEs that model hyperelastic [36] and superelastic [30] materials.

For curvilinear mesh generation, PDEs that model linear elasticity [1,14,19,40] have been used for various appli-
cations. Persson and Peraire [28] extended the technique to model the mesh as a nonlinearly elastic material. In the
latest work, thermoelastic equations were used by Moxey et al. [25].

In many of these techniques, meshes were progressively deformed over many steps to obtain a valid, high-quality
mesh. In nonlinear elasticity-based techniques, additional variables such as the material stiffness and thermal stresses
were iteratively modified to obtain a valid mesh in case the early attempts failed.

2.3. Interpolation-Based Technique

Interpolation-based techniques have been employed only for linear mesh deformation algorithms. For instance,
Staten et al. [39] developed the simplex-linear transformation algorithm, which carries out a linear interpolation of
mesh vertices after coarsening the mesh. Other forms of interpolation techniques for scattered data such as kriging and
inverse distance weighting have not yet been used for mesh deformation. RBF interpolation techniques, however, have
been used to interpolate the positions of the interior mesh vertices [8,20,22,37,38]. Such techniques have consistently
shown better deformation than that by other techniques described above. Thus, we extend the RBF interpolation-based
technique to curvilinear meshes in this paper. Besides the straightforward extension, we analyze why such algorithm
have always produced higher-quality meshes than other algorithms and develop a framework based on calculus of
variations to aid in the development of future algorithms.

3. Background

We provide a brief background on the RBF interpolation techniques in this section. A naive implementation of the
RBF interpolation technique, whose time complexity is O(n3), scales very poorly. There are acceleration techniques
that scales very well, whose complexity is O(n log n). Readers who are familiar with the literature may skip this
section.
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3.1. Radial Basis Function Interpolation

Consider the following scattered data interpolation problem. Given yi = f (xi) for i ∈ 1, 2, ..., n, find a function that
interpolates the data. The vector xi may be of any dimension. The RBF interpolation technique computes the function
by assuming that it is of the form

f (x) =

n∑
i=1

ωiφ(||x − xi||2),

where ωi are the weights that need to be computed and φ(·) is a radial basis kernel whose value depends only on the
length of the vector, not its direction. The kernel may be defined using any function, but some functions are preferred
over others due to certain desirable properties. Some examples of such kernels include

• the Gaussian kernel: exp (−εr)2,
• the multiquadratic kernel:

√
(1 + (εr)2),

• the inversequadratic kernel: 1
1+(εr)2 , and

• the polyharmonic spline: rk, for k ∈ {1, 3, 5, ...} and rklogr, for k ∈ {2, 4, 6...},

where r is the length of a vector and ε is some scaling factor. It can be inferred from the function definitions that some
of these functions have “global” support, i.e, their value increases as r increases, whereas others have “compact”
support, i.e., their value decreases as r increases. Also, when k = 2 for RBF interpolation using polyharmonic splines,
it is also called a thin plate spline.

The weights ωi are computed by solving a system of linear equations with n equations and n variables obtained
by substituting xi for x and yi for f (x) in the interpolating function above. For globally supported kernels, as n or the
domain of the scattered data points increases, the conditioning of the matrix deteriorates. For compactly supported
kernels, the condition number also increases, but gradually. In both cases, it is advisable to use iterative solvers rather
than direct solvers for two reasons. For kernels with global support, an ill-conditioned system results in large errors in
the output when a direct solver is used. For kernels with compact support, preconditioned iterative solvers converge
to a solution much faster than direct solvers. Globally supported kernels, however, extrapolate the data very well
outside the domain of the input data. Although mesh deformation is an interpolation problem, the scattered data is
provided only at the boundary of the mesh. A point in the interior of the mesh may be far from the boundary, and the
interpolation of the function values at those locations may become close to zero if kernels with a compact support are
used. Thus, for large domains, either (a) a kernel with global support or (b) a kernel with compact support, but with a
large scaling factor must be used. Note that the advantages of compactly supported kernels are progressively lost as
the scaling factor is slowly increased.

An additional polynomial term may be added to the RBF interpolation technique so that functions that are already
close to being a polynomial are easily reconstructed. We use a linear polynomial in our implementation because the
locations of the vertices in the undeformed mesh correspond to the simplest linear function, f (x) = x, in each axis
and also because it results in the “smoothest” interpolant, i.e., An integral of a function of the second-degree partial
derivatives is minimized. Its importance is discussed in Section 4. To account for the additional terms due to the
polynomial in the interpolating function, the following equations are added to the linear system:

n∑
i=1

α j p j(xi) = 0,

for j ∈ {1, 2, ...,m}, where p j(·) is a jth basis polynomial and α j is its multiplicative coefficient.

3.2. Acceleration Techniques

Clearly, a naive implementation of the above technique leads to poor scaling of the algorithm. For an RBF-based
method to be a viable option, acceleration techniques, which improve the expected runtime from O(n3) to O(n log n),
where n is the number of points on the boundary of a mesh, should be employed. Note that the evaluation of the
function at any point also takes O(n) time (after the weights, ωi, have been computed). The evaluation should also
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be reduced to O(log n) for fast computation of the RBF interpolant. These reductions, however, come at the cost of
accuracy of the evaluated function, which may affect the quality of the mesh. Thus, they should be used cautiously.

The linear system constructed from the equations above is solved using Krylov subspace methods, which involve
repeated matrix-vector multiplications. Such evaluations may be accelerated through fast multipole methods (FMMs)
for RBF interpolations [15,16]. The FMMs recursively decompose the domain into octrees such that it becomes
possible to group the points that are close together in the domain. During the matrix-vector multiplications, for all
the points in the dataset, their distance to a given point and their associated weights are multiplied independently [17]
and added together. It is possible to approximate the sum of the products by hierarchically considering the groups
of points in the octree decomposition. This technique was originally used to evaluate the value of the interpolating
function after the weights are accurately computed [15,16].

Moreover, the linear system may be preconditioned using a matrix constructed by a subset of the scattered data
points whose RBF interpolation approximates the RBF interpolation for all points in the dataset. Such a subset of
points may be constructed using an octree structure such that the points are dispersed over the domain [3–5,17].
These techniques have not been implemented yet, and we leave the analysis of the technique for realistic domains as
future work.

4. The Algorithm and the Analysis

We provide a straightforward algorithm for curvilinear mesh generation below. We then analyze the functionals
that are minimized by some of the methods described in Section 2. Based on the analysis, some possible extensions
are recommended for the RBF interpolation-based algorithms.

4.1. RBF-Based Curvilinear Mesh Generation Algorithm

In the early mesh deformation algorithms such as Laplace’s equation or biharmonic equation-based methods, the
respective equations were solved independently for each dimension. For the elasticity-based algorithms, the equations
are inherently dependent along all the dimensions, so the mapping functions for each of the dimensions are computed
simultaneously. In the RBF-based algorithm, we compute the mapping functions independently for each dimension.
The mapping function values for the boundary nodes are set based on the required curvature at the boundary. The
interior vertices are moved to the locations dictated by the interpolated values.

We implemented this algorithm in C++ using the standard template library. The linear conjugate gradient (CG)
solver was solve the system of linear equation that arise from the formulation. In our formulation, we added a linear
polynomial term to the RBF interpolant. Since the resulting system is symmetric and positive definite, the CG solver
was sufficient for our purpose. In theory, the CG solver converges in n iteration if there are n equations, but due to
floating point issues, it may need more. We run the solver for 5n iterations and use the solution from the step for
which the residual error is minimum.

The results, provided in Section 5, show that the shape of the deformed elements respects their original shape more
“closely” than they do for the thermoelasticity-based equations. Similar results have been published in a number of
papers for RBF-based mesh deformation algorithms. In the rest of this section, we provide possible explanations for
the results and improve the RBF-based algorithm based on the analysis.

4.2. Calculus-of-Variations Analysis of Mesh Deformation

The solution of PDEs as well as the interpolation of scattered data minimize the value of functionals, which map a
set of functions to a set of real numbers, under a set of certain constraints on the functions that vary for each problem.
The study of optimization of functionals is called calculus of variations. We study the functionals that are minimized
and explain why the RBF-based techniques are most likely than other techniques to produce high-quality meshes.

4.2.1. Laplace’s Equation
Early algorithms for mesh deformation used the solution of Laplace’s equation mainly because of its simplicity in

both the application of boundary conditions and implementation. In addition, it minimized the following functional,
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also known as the Dirichlet energy:∫∫
Ω

1
2
||∇ f ||2 dA =

1
2

∫∫
Ω

(∂ f
∂x

)2

+

(
∂ f
∂y

)2 dA,

where Ω is the domain. The functional contains only the first-order partial derivatives, which can be intuitively seen
as controlling the affine translation matrix for an infinitesimal element in the context of mesh deformation. We will
provide a Taylor series-based analysis in Section 4.3 to mathematically and geometrically illustrate the intuition.

4.2.2. Biharmonic Equations
In addition to the Dirichlet boundary conditions associated with the movement of boundary vertices, the biharmonic

equation requires boundary conditions that may constrain the gradients, the Hessian, or the third-order partial deriva-
tives. These conditions provide additional flexibility (over the Laplacian equation) to control the mapping function
for the mesh deformation. Helenbrook [18] provides an analysis of possible boundary conditions for the problem and
the contexts in which the conditions are applicable. The solution of the biharmonic equation minimizes the following
functional subject to the boundary conditions:∫∫

Ω

(∂2 f
∂x2

)2

+ 2
(
∂2 f
∂x∂y

)2

+

(
∂2 f
∂y2

)2 dA.

This functional is also called the “bending energy”, and it contains only second-order partial derivative terms for
the mapping function. Intuitively, it controls the location of a vertex with respect to another vertex in the domain. If
the location of the first vertex is known, the location of the second vertex is constrained to lie within an rectangle,
whose center is at a location that is a function of the first-order partial derivatives, and the length and the breadth is a
function of the bounds on the second-order partial derivatives. Section 4.3 provides more details.

4.2.3. Linear Elasticity
The solution of the PDE that model linear elasticity minimizes the following functional:∫∫

Ω

(
λ (∇. f )2 + µε2

xy( f )
)

dA, where εxy( f ) =
1
2

(
∂ fx

∂y
+
∂ fy
∂x

)
,

f is a vector-valued function [ fx; fy], and λ and µ are the Lamé parameters, which are material-specific values.
It can be shown that the solution of the linear elasticity equations also satisfy the biharmonic equations, but the
additional boundary conditions needed to obtain a unique solution to the biharmonic equations are functions of the
Lamé parameters. Thus, the solution of the linear elasticity equations also minimizes the energy functional for the
biharmonic equations for a smaller subspace of functionals. One can argue that the biharmonic equation-based method
to deform meshes is a generalization of the linear elasticity-based method, but note that elasticity-based methods
provide greater control on the mapping function as the Lamé parameters can be modified at specific parts of the
domain where the technique is likely to produce inverted elements.

We do not provide the energy functionals for nonlinear elasticity equations [28] or thermoelasticity equations [25]
as they are tedious to write down. For the purpose of analysis, an intuitive understanding is sufficient. For nonlinear
elasticity, the energy functionals are functions of first-order partial derivatives of the mapping raised to fractional
powers based on any relevant model. The energy functional minimized by the thermoelasticity equation contains an
additional temperature-based term that is designed to prevent inversion of vulnerable elements based on the minimum
determinant of their Jacobian matrix.

4.2.4. Thin Plate Spline
RBF interpolation with biharmonic kernels (also known as the thin plate splines) minimize the same functional

as the biharmonic equations above (the bending energy). The difference is that thin plate splines are not constrained
by the additional boundary conditions as in the case of the biharmonic equations. Thus, the energy functional is
optimized over a larger space of functions. As a consequence of the minimization of the energy functional, we
prove the following lemma, which was also proved for Laplace’s equation-based mesh deformation by Shontz and
Vavasis [34].
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(b) gradient-based range

v∗
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1
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(c) Hessian-based range

Fig. 1: The undeformed element is shown on the left. We may be provided with a bound on the first- or second-order partial derivatives of the
mapping function. If the mapping of one of the vertices v0 is known, the range of the locations of the other vertices can be computed using the
Taylor-series approximation. As shown in the central figure, if the bounds of the first-order partial derivatives are provided, the other two vertices
are constrained to be within their respective rectangles. If the bounds on the second-order partial derivatives are provided (and the first-order
derivatives are known), the vertices are constrained to be within their respective rectangles as seen in the figure on the right. The dimensions of all
regions are proportional to the relevant partial derivatives and the length of the edges in the undeformed triangle.

Lemma 1. If the boundary vertices are affinely transformed, the interior vertices are also affinely transformed by the
thin plate-spline mesh deformation algorithm.

Proof. For an affine transformation, the bending energy of the transformation vanishes because the second-order
partial derivatives vanish, but for any other transformation function that respects the affine transformation of the
boundary vertices, the bending energy is positive because the second-order partial derivatives no longer vanish. As
thin plate splines minimize the bending energy, the interior vertices are also affinely transformed.

We can also prove the lemma above by noting that the linear system arising from the data points is nonsingular.
Thus, it has a unique solution. If the linear system arises from an affine transformation of the data points, only the
weights associated with the linear polynomial basis functions are sufficient to interpolate the function, and the weight
associated with all data points is zero. Therefore, even the interior vertices are affinely perturbed.

Since the same energy functional is minimized by the biharmonic equations (under certain constraints), this tech-
nique can also be viewed as a generalization of the biharmonic equation-based technique to deform meshes. Note
that RBFs have been used to solve PDEs using Kansa’s technique [7,21] with the advent of “meshfree” techniques. In
such techniques, the solutions of the PDEs are treated as a constrained interpolation problem, where the constraints
are imposed by the PDEs themselves. In this sense, the RBF-based mesh deformation and curvilinear mesh generation
technique can be viewed as a generalization of the PDE-based techniques. Thus, this is a clean-slate approach (devoid
of any constraints) in which additional constraints can be added (explained in Section 4.4) when necessary to obtain
untangled, high-quality meshes.

4.3. Taylor Series-Based Analysis of Element Inversion

Shontz and Vavasis [34] carried out a Taylor series-based analysis of the possibility of element inversion when
a mesh is being deformed using the solution to Laplace’s equation. We generalize their analysis in the calculus-of-
variations framework for any algorithm that computes a mapping from the source domain to the target domain.

Consider a triangle whose vertices are located at ~v0 = [x0, y0], ~v1 = [x1, y1], and ~v2 = [x2, y2] (see Fig. 1a). Let
the mapping function be denoted by ux and uy for x− and y−axis, respectively. Let the first vertex be mapped to
~v∗0 = (x∗0, y

∗
0). Let ~v1 − ~v0 = ~v01 = (∆x1,∆y1) and ~v2 − ~v0 = ~v02 = (∆x2,∆y2). In the rest of the section, we use the

Taylor series expansion to bound the locations of the mesh vertices.
Since the solutions of Laplace’s equation and the linear elasticity equations impose a bound on the first-order

partial derivatives, we may assume that |∂ux/∂x| ≤ cxx, |∂ux/∂y| ≤ cxy, |∂uy/∂x| ≤ cyx, and |∂uy/∂y| ≤ cyy. Then, the
new locations of two other vertices, ~v∗1 = [x∗1, y

∗
1] and ~v∗2 = [x∗2, y

∗
2], are within a rectangle centered around ~v∗0, i.e,

x∗1 ≤ x0 + cxx∆x1 + cxy∆y1 and y∗1 ≤ y0 + cyx∆x1 + cyy∆y1, with similar equations for the lower bound of x1 and y1.
Similar bounds may also be obtained for ~v∗2. Fig. 1b provides a geometrical illustration of these constraints.

The solution of the biharmonic equation and the RBF interpolation both limit the second-order partial deriva-
tive. Thus, we may assume |∂2ux/∂x2| ≤ kxx, |∂2ux/∂y2| ≤ kyy, and |∂2ux/∂x∂y| ≤ kxy. Let us also assume that
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|∂ux/∂x|x=x0,y=y0 = ax and |∂ux/∂y|x=x0,y=y0 = ay. Then, the location of x∗1 is within

x∗0 + ax∆x1 + ay∆y1 ±
1
2!

(
kxx∆x2

1 + kyy∆y2
1 + kxy∆x1∆y1

)
.

Similarly, the location of y∗1 can also be constrained. These constraints imply that the location of the two vertices
is constrained to be within the two rectangles shown in Fig 1c. The centers of the rectangles are the first-order
approximate locations of the vertices under consideration.

Clearly, the equations and figures indicate that the gradients of the mapping functions can control the scaling of
the mapped triangle but not its shape. On the other hand, when the second-order partial derivatives are bounded, the
shape of the triangle is also bounded to a great extent. As a result, when the second-order derivatives are bounded,
the likelihood of element inversion is minimized. In fact, if the quality of an element is good, the mapping function in
that region can tolerate a large bound on the second-order partial derivatives.

Shontz and Vavasis [34] derived a set of sufficient conditions that ensure that no elements in the mesh get inverted.
The condition is an inequality that bounds the ratio of the first- and second-order partial derivatives of the mapping
function as a function of the shape and the size of an element. In this paper, we focus on how limiting the second-
order partial derivatives is more important than limiting the first-order partial derivatives, which is a consequence of
the result from Shontz and Vavasis [34]. In fact, we ought to limit the ratio of second-order partial derivatives to the
first-order partial derivatives to develop an “ideal” mesh deformation algorithm. We leave that as future work.

4.4. A Framework for Mesh Deformation

In this subsection, we analyze how RBF-based algorithms should be modified to make them more robust. We also
compare and contrast our modifications with the analogous modifications in other mesh deformation and curvilinear
mesh generation techniques.

Shontz and Vavasis [35] identified the following three causes of element inversion during mesh deformation: (a)
large boundary transformation, which results in unfavorably directed gradients in the mapping function; (b) large
second-order partial derivatives, which result in poor-quality or large elements becoming inverted; or (c) the difference
between the numerical and the analytical solution of the equations that compute the mapping function.

For type (a) element inversion, a common solution is to circumvent the issue by carrying out the deformation in
multiple steps. This solution has been used in almost all techniques for mesh deformation. We recommend the same
solution as it is very effective. For curvilinear mesh generation, this cause of element inversion is rather uncommon
because the deformations are themselves quite small.

For type (b) element inversion, Shontz and Vavasis [35] recommend refining the mesh. This strategy works because
the length of an edge in the mapped triangle is asymptotically proportional to the length of the edge in the initial
triangle (assuming the first-order partial derivatives of the mapping functions are bounded), but the uncertainty in the
position of the vertex (the dimensions of the rectangle) is proportional to the square of the length of the edge in the
initial triangle. Geometrically, as the length of the edge of the initial triangle reduces, the dimensions of the rectangle
reduce much faster than the length of the edge in the mapped triangle3. Thus, if the elements are small enough, they
will not be inverted after the transformation. In the elasticity-based techniques, physical quantities such as stiffness
constants or the temperature are locally modified in each subsequent iteration to indirectly address this problem of
a large second-order derivative. In our approach, it is possible to add constraints on the first- and the second-order
partial derivatives at any point in the domain. Thus, we recommend adding more equations to the linear system to
mitigate the problem as it does not refine the mesh.

Type (c) element inversion is typically not seen in any of the techniques because numerical techniques are very
accurate. In our technique, faster, approximate algorithms may be used to compute the transformation. If the solution
is not accurate enough, a technique to adaptively evaluate more-accurate mapping functions in certain parts of the
region should be developed.

3 It is a consequence of the Taylor series-based analysis presented above.
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(a) the undeformed mesh (b) thermoelasticity-based technique (c) RBF-based technique

Fig. 2: The initial straight-sided, high-order, undeformed mesh (left) and curvilinear meshes generating using thermoelasticity equation (center)
and RBF interpolation-based (right) techniques. The high-order elements are shown using dark lines, and the interior quadrature points are shown
using light lines. The domain of the initial mesh ranges from (0, 0) to (1, 1). The meshes were deformed such that the vertices on the bottom
boundary lie of the curve y = 0.5 sin πx. The meshes were deformed in a single step.

5. Numerical Experiments

In this section, we present the results from the implementation of the RBF-based (thin plate spline) curvilinear
mesh generation technique. We mainly focus on how the placement of vertices by our method attempts to preserve
the shape of the initial mesh. We compare our method against the thermoelasticity-based technique [25] that was
implemented in Nektar++ [6]. We use the same material parameters as given in [25]. The results may vary for other
parameters. Note that there are no parameters to set for the thin plate spline RBF interpolation technique. This is an
additional advantage of the technique.

5.1. Experimental Setup

Since previous studies have shown the effectiveness of the RBF-based mesh deformation algorithms in generating
high-quality meshes, in this paper, we focus only on the differences in the vertex placement of the RBF interpolation-
based technique and thermoelasticity-based technique. Our results show that the RBF-based method can handle larger
deformation without producing an invalid mesh4. We show the results from a single-step and a multi-step deformation
of the initial straight-sided mesh.

Our numerical experiments are described using Fig. 2. We start with an undeformed square mesh and move the
vertices on its bottom boundary to lie on a sinusoidal curve y = α sin(πx). The initial sixth-order mesh is shown in
Fig. 2a. The mesh contains both isotropic and anisotropic elements of different areas, with 72 triangular elements.

We perform the following two experiments to study the effectiveness of the curvilinear mesh generation techniques:
(a) vary α to determine how much deformation the two techniques can handle, and (b) compare the meshes after one-
and two-step deformation is carried out for the same α.

5.2. Results

For α = 0.5, the results of the screenshot of the whole domain are shown in Fig. 2. The high-order elements
are shown using dark lines, and the interior quadrature points are shown using light lines. We curve the bottom
boundary of the domain, and the resulting curvature results in greater deformation of the elements in the bottom half
of the domain. Since the elements in the bottom half of the domain are highly anisotropic, this deformation is more
challenging than the deformation of the top boundary. The differences in the two techniques can be clearly seen in
the figure. The thermoelasticity-based technique was successful in generating a valid mesh, but the elements near
the boundary are very skinny. The RBF-based technique has preserved the thickness of the boundary layer of the

4 Triangular elements with a negative determinant of the Jacobian matrix at some point in the triangle are considered invalid.
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(a) thermoelasticity-based technique (b) RBF-based technique

Fig. 3: Zoomed-in views of the curvilinear meshes obtained from the thermoelasticity equations (left) and the RBF-based interpolation (right). The
meshes were deformed such that the vertices on the bottom boundary lie on the curve y = 0.5 sin πx. The meshes were deformed in a single step.

(a) thermoelasticity-based technique (b) RBF-based technique

Fig. 4: Zoomed-in views of the curvilinear meshes obtained from the thermoelasticity equations (left) and the RBF-based interpolation (right). The
meshes were deformed such that the vertices on the bottom boundary lie on the curve y = 0.5 sin πx. The meshes were deformed in two steps.

triangles at the bottom of the domain. Another difference is in the movement of vertices along x−axis. Since the
thermoelasticity-based technique uses material properties such as the Poisson’s ratio, which relates the deformation
along all axes, we see that the vertices have moved significantly along the x−axis near the bottom boundary. On the
other hand, the vertex movement is independent along each axis for the RBF-based technique, so the vertices have
not moved along the x−axis. We consistently observe this behavior in the rest of the paper. We have also provided the
screenshots of the meshes that are zoomed-in near the maxima of the sinusoidal boundary (see Fig. 3). In the rest of
the paper, we provide the screenshots of the mesh that are zoomed-in near the same region.

In a separate experiment, we were able deform the meshes until α = 0.55 and α = 0.65 for the thermoelasticity
and RBF-based techniques, respectively, in a single step. The results have not been visualized because the minimum
determinant of the Jacobian matrix was too small in this experiment.

Fig. 4 shows the curvilinear meshes for α = 0.5 as in the previous experiment, but the meshes were obtained in
two steps. The meshes were first deformed corresponding to α = 0.25 and then further deformed to obtain the final
mesh. Although the meshes appear identical (to images in Fig. 3), the vertex positions result in thicker elements in
the two-step process than in the one-step process. A closer observation of the ratio of the lengths of the vertical edges
in the two images for the thermoelasticity-based technique reveals that the two-step process does provide favorable
vertex positions, i.e., the size and the shape of the element is similar to that of the original element. The difference
for the RBF-based technique is too small to be visualized. We also observed that the changes in the positions of the
vertices become insignificant after more than five steps are used to obtain the final mesh.

In our next experiment, we held the number of steps at five. We then generated curvilinear meshes with as much
deformation as possible. We found that the value of α at which the thermoelasticity-based technique fails to generate
a valid mesh is around 0.6. For the RBF-based technique, however, the maximum value of alpha is around 0.8.
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(a) straight-sided mesh (b) RBF-based technique

Fig. 5: Curvilinear meshes generated from an initial straight-sided mesh using the RBF-based technique for the air foil domain. The
thermoelasticity-based technique fails to provide a valid mesh for this domain. The technique returns an element with a negative valued for
the determinant of the Jacobian within an element near the bottom left boundary of the air foil.

We analyzed the scaled Jacobian values (the ratio of the minimum and the maximum values of the determinant of
the Jacobian within an element) for the elements that gets inverted due to the deformation using the two techniques.
The thermoelasticity-based technique returns a mesh with the smallest scaled Jacobian value for the lower, center-left
element in the bottom row for large deformations. The RBF-based technique returns a mesh with the smallest scaled
Jacobian value for the upper, central-right element in the fifth row of elements from the top. We leave the investigation
of the reasons behind these results for future work.

We carried out curvilinear mesh generation for an air foil domain as show in Fig. 5 using the RBF-based tech-
nique. The initial straight-sided mesh was obtained from Distmesh [29]. The thermoelasticity-based technique fails
to provide a valid mesh because the mesh is too coarse for the deformation it is undergoing. This illustrates that the
technique is suitable for a real-world examples and and can handle deformation in both axes.

These experiments show that the RBF-based technique can handle greater deformation then the thermoelasticity-
based technique. We must mention that the RBF technique is slower for large meshes. Specifically, our imple-
mentation’s running time is O(n3). The robust nature of the techniques comes at the cost of the complexity of the
algorithm. The results, by themselves, are not novel as many other papers have reported similar results in the context
of deformation of linear meshes. We leave the development of an O(n log n) implementation as future work.

6. Conclusions and Future Work

The main contribution of the paper is a framework for mesh deformation and curvilinear mesh generation based
on calculus of variations. We have shown how RBF interpolation with the thin plate kernel is close to meeting
the objectives of a mapping function based on our framework. Clearly, developing an “ideal” algorithm for mesh
deformation based on the framework is a pending task. We plan to explore numerical methods for problem in calculus
of variations and develop a more robust algorithm for mesh deformation. The mapping from the algorithm should
minimize the ratio of a second-order partial derivative and a first-order partial derivative at all points, especially near
poor-quality elements.

In addition, in order to get the RBF-based algorithm to scale for large meshes, preconditioners and approximation
schemes must be considered. Implementation of these techniques should result in more successful mesh deformation
algorithms. As mentioned before, their application may result in suboptimal locations of the mesh vertices as the
locations of the vertices are not approximations of the RBF interpolant. Thus, additional techniques must be developed
to adaptively obtain greater accuracy in the solution.

Also, for curvilinear mesh generation, typically, only a few layers of element near the boundary are curved. Thus,
compactly supported kernels might be sufficient for this purpose. The development of algorithms for this specific
purpose is also an interesting direction of research. In application requiring boundary layer elements, the vertices
near the boundary have to be moved in the direction of the boundary normal. This may be achieved using generalized
Hermite interpolation techniques. We will study and develop these techniques in the near future.
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